
FISEVIER

Contents lists available at ScienceDirect

Journal of Solid State Chemistry

journal homepage: www.elsevier.com/locate/jssc

Preparation and structural study from neutron diffraction data of Pr₅Mo₃O₁₆

M.J. Martínez-Lope ^a, J.A. Alonso ^{a,*}, D. Sheptyakov ^b, V. Pomjakushin ^b

ARTICLE INFO

Article history: Received 17 September 2010 Accepted 12 October 2010 Available online 20 October 2010

Keywords: $R_2\text{MoO}_6$ Rare-earth molybdenum oxides Fluorite superstructure Mixed valence compound Ce_2MoO_6 $\text{Ce}_5\text{Mo}_3\text{O}_{16}$

ABSTRACT

The title compound has been prepared as polycrystalline powder by thermal treatments of mixtures of Pr_6O_{11} and Pr_6O_{12} and Pr_6O_{13} and Pr_6O_{13} are reported here for the first interesting catalytic properties, but its true stoichiometry and crystal structure are reported here for the first time. It is cubic, isostructural with Pr_6O_{13} and Pr_6O_{13}

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Metal oxides simultaneously containing transition metals and lanthanide ions present a panoply of interesting properties and applications, spanning from superconductivity (e.g. in $(La,Sr)CuO_{4-\delta}$) [1] to colossal magnetoresistance (e.g. in $(La,Ca)MnO_3$) [2] or catalysis (e.g. $CaFeO_{3-\delta}$) [3]. When both metal ions posses a variable oxidation state, the prospect of charge transfer between them appears as an attractive possibility, perhaps associated with novel phenomena and functionalities. As a requirement, the chemical potential of the f ion should be energetically close to the Fermi level of the transition-metal d-bands [4]. This circumstance is accomplished when the f ion is a light lanthanide, particularly Ce or Complex or Complex where the Complex or Complex

Within the field of heterogeneous catalysis, particularly appealing are the ternary Pr–Mo–O [7] and quaternary Bi–Pr–Mo–O [8–10] phases, which are active as catalysts for the partial oxidation of propene and isobutene. An oxide named Pr_2MoO_6 is present in the phase diagram of the Pr–Mo–O system and participates in the catalytic activity for selective olefin oxidation [11–13]. This Pr_2MoO_6 oxide has also been reported among the other members of the well-described R_2MoO_6 family (R=rare earths) [14]. Depending on the size or the synthetic conditions, R_2MoO_6 compounds have been described to crystallize in three polymorphs, with monoclinic (α), cubic (β) and tetragonal (γ) symmetries [14]. Most of the small-sized rare-earth cations form the monoclinic (α) phase, which is closely

related to the scheelite-type structure. Scheelite itself is a super-structure of fluorite (CaF₂, cubic, a=5.5544 Å, Fd-3m) [15]. The crystal structure of the α -phase has been recently refined for Tb₂MoO₆ in the I2/c space group from neutron powder diffraction data [14], as well as those of the remaining α - R_2 MoO₆ polymorphs for small-sized rare earths, R=Y, Dy, Ho, Er, Tm, Yb [16]. The La polymorph is tetragonal (space group $I4_1/acd$, γ phase) [14] whereas the Ce, Pr and Nd compounds have been described as pseudocubic (β phase) [4,14] although the space group symmetry and structural features have not been reported so far. For R=Pr, Nd it seems that the materials prefer either the pseudocubic or the tetragonal structures, depending on the synthesis conditions: the tetragonal form is the high-temperature phase, whereas the pseudocubic structure (β) can be stabilized at low temperatures [14].

In this work we have focused on the actual composition and crystal structure of the so-called Pr_2MoO_6 pseudocubic oxide. In fact it presents a stoichiometry $Pr_5Mo_3O_{16}$ and it consists of a cubic superstructure of fluorite, where a mixed or intermediate valence for Pr and/or Pr Mo is expected from the nominal composition. Given the weak Pr-ray scattering power of oxygen compared to that of praseodymium or molybdenum atoms, neutron powder diffraction has been the technique of choice for this investigation. A bond-valence study was of much help to unveil the valence state for the involved metals in this oxide.

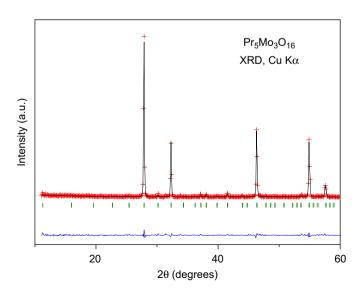
2. Experimental

A sample of nominal composition Pr_2MoO_6 was prepared by a solid state reaction from stoichiometric amounts of analytical

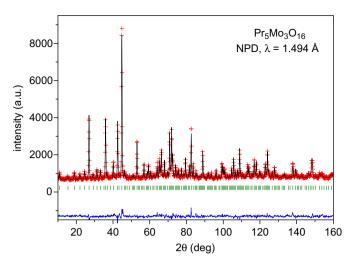
^a Instituto de Ciencia de Materiales de Madrid, C.S.I.C., Cantoblanco, E-28049 Madrid, Spain.

^b Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

^{*} Corresponding author.


E-mail address: ja.alonso@icmm.csic.es (J.A. Alonso).

grade Pr_6O_{11} and $MoO_2.$ The reactants were mixed, ground and calcined at 1100 $^{\circ}\text{C}$ for 12 h in air.


The initial characterization of the product was carried out by laboratory X-ray diffraction (XRD) (Cu $K\alpha$, $\lambda = 1.5406$ Å). A roomtemperature neutron powder diffraction (NPD) diagram was collected at the HRPT diffractometer of the SINQ spallation neutron source at PSI, with a wavelength of 1.494 Å. The high intensity mode was used; the collection time was 2 h. The structure has been solved ab-initio with the FOX [17] software. The refinement of the crystal structure was performed by the Rietveld method, using the FULLPROF refinement program [18], with the use of its internal tables for the coherent scattering lengths of corresponding elements. The peak profiles were fitted by the Thompson-Cox-Hastings pseudo-Voigt function corrected for axial divergence asymmetry. The following parameters were refined in the final run: scale factor, background coefficients, zero-point error, pseudo-Voigt corrected for asymmetry parameters, positional coordinates and anisotropic thermal factors.

3. Results and discussion

A polycrystalline oxide of nominal composition Pr₂MoO₆ was obtained as a pale yellow powder. Fig. 1 shows the corresponding XRD diagram, fitted to the structural model described below. The pattern seems to be characteristic of a fluorite-like structure (cubic. a=5.54 Å). However, the NPD pattern shows many more reflections that cannot be indexed in a simple fluorite subcell, already indicating that Pr and Mo are not randomly distributed over the same crystallographic positions, but are long-range ordered in a fluorite superstructure. On the other hand, this XRD diagram is very similar to that given by Antonio et al. [4] for Ce₂MoO₆, for which the crystal structure was not reported. The superstructure reflections were more clearly visible in the NPD diagram, which was indexed with the TREOR programs in a cubic unit-cell with a=11.084 Å. A pattern matching (Le Bail fit) in this unit cell leads to an excellent agreement between observed and calculated profiles. The systematic extinctions were consistent with the Pn-3n space group (No. 222). In the asymmetric unit there are two independent Pr atoms at 12e(x, 1/4, 1/4) and 8c(0,0,0) positions, Mo at 12d(0, 3/4, 1/4) sites and the two kinds of oxygen atoms at 48i(x, y, z)and 16f(x, x, x) positions. Fig. 2 illustrates the goodness of the NPD fit. The crystallographic formula indeed corresponds to Pr₅Mo₃O₁₆,

Fig. 1. XRD pattern of $Pr_5Mo_3O_{16}$. The Rietveld fit corresponds to the structural model described in the Pn-3n space group, with a=11.08979(9) Å.

Fig. 2. Observed (crosses), calculated (solid line) and difference (at the bottom) NPD profiles for $Pr_5Mo_3O_{16}$ at 295 K. The tick marks indicate the positions of the allowed Bragg reflections.

Table 1 Structural parameters for $Pr_5Mo_3O_{15}$ refined in the cubic Pn-3n space group (No. 222) at room temperature from NPD. Lattice parameters: a=11.08979(9) Å and V=1363.86(2) ų. Discrepancy factors: R_p =3.46%, R_{wp} =4.49%, R_{exp} =3.19%, χ^2 =1.98 and R_{Bragg} =7.09%.

Atom	Site	х	у		z	$B_{\rm eq}(\mathring{A}^2)$
Pr1	12e	0.0089(5)	0.2500		0.2500	0.51(8)
Pr2	8 <i>c</i>	0.0000	0.0000		0.0000	1.32(16)
Mo	12d	0.0000	0.7500		0.2500	0.98(7)
01	48i	0.5851(2)	0.3629	9(2)	0.8275(2)	1.74(4)
02	16 <i>f</i>	0.1203(3)	0.1203	3(3)	0.1203(3)	0.71(4)
Atom	β_{11}	opic thermal f β_{22}	Factors (\times 1 β_{33}	β_{12}	β_{13}	β_{23}
Pr1	4(4)	13(3)	13(3)	0	0	0
Pr2	27(3)	27(3)	27(3)	-4(3)	-4(3)	-4(3)
Mo	29(4)	16(2)	16(2)	0 ` ´	0 `´	0 ` ´
		, ,	42(2)	-9(2)	17(2)	-1(2)
01	41(2)	23(2)				
O1 O2	41(2) 14(1)	23(2) 14(1)	14(1)	0	0	0

Z=4. In fact, this structural arrangement resulted to be isotypic with CdTm₄Mo₃O₁₆ [19]. The refined atomic coordinates after the refinement are listed in Table 1, and the bond distances and angles are given in Table 2.

A representation of the crystal structure is shown in Fig. 3. The oxygen coordination polyhedra for Pr1, Pr2 and Mo are shown in Fig. 4. Both Pr atoms are coordinated to eight oxygen atoms, within rather distorted scalenohedra. For Pr10₈ the polyhedron contains 4 Pr1-O1 bond lengths of 2.589(4) Å, and 4 Pr1-O2 of 2.380(4) Å with average $\langle Pr-O \rangle$ distances of 2.485 Å; in Pr2O₈ there are 6 Pr2-O1 bond lengths of 2.619(2) Å and 2 Pr2-O2 distances of 2.311(3) Å, with a $\langle Pr2-0 \rangle$ average of 2.542 Å. We can define the relative distortion of the polyhedra with the Δ_d parameter, concerning the deviation of Pr-O distances with respect to the average $\langle Pr-O \rangle$ value, as $\Delta_d = (1/8) \sum_{n=1,8} [(d_n - \langle d \rangle)/\langle d \rangle]$ [2]; we obtain $\Delta_d(\Pr 1) =$ 17.7×10^{-4} and $\Delta_d(Pr2) = 27.7 \times 10^{-4}$. Mo atoms are bonded to four oxygen atoms at distances of 1.788(2) A conforming quasi-regular tetrahedral units (O-Mo-O angles are 116.3(2)° and 106.2(2)°). A description of the structure can be obtained from Fig. 5. Pr10₈ scalenohedra form trimer units by sharing three edges via O2 atoms; every two of these units form a quasi-cubic cavity where Pr2 atoms are located; thus the Pr2O₈ scalenohedron shares three edges

Table 2 Main bond distances (Å) and selected angles (deg.) for $Pr_5Mo_3O_{15}$ determined from NPD data at RT.

Pr1-O1 (× 4) Pr1-O2 (× 4)	2.589(4) 2.380(4)	
Pr2-O1 (× 6) Pr2-O2 (× 2)	2.619(2) 2.311(3)	
Mo-O1 (× 4) O1-Mo-O1 (× 2)	1.788(2) 116.3(2)	
01-Mo-01 (× 2)	106.2(2)	

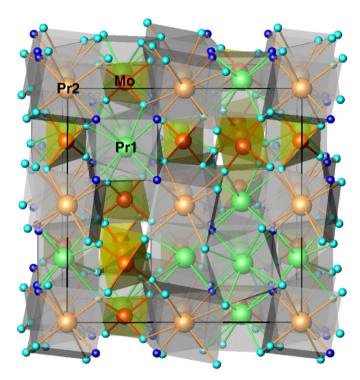


Fig. 3. View of the crystal structure of $Pr_5Mo_3O_{16}$ along an axis: PrO_8 scalenohedra are long-range ordered with MoO_4 tetragonal units.

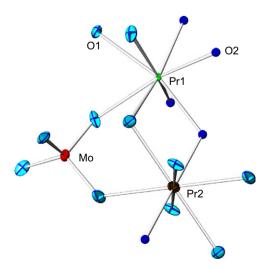
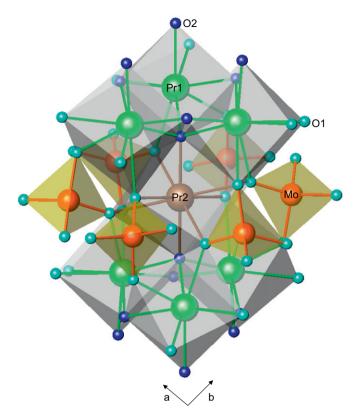



Fig. 4. ORTEP plot of the asymmetric unit of $Pr_5Mo_3O_{16}$, showing the oxygen coordination of Pr_1 , Pr_2 and Mo.

Fig. 5. Partial view of the crystal structure of $Pr_5Mo_3O_{16}$; $Pr1O_8$ scalenohedra share three edges forming a quasi-cubic cavity where Pr2 atoms are located; the MoO_4 tetrahedra are corner connected to both Pr scalenohedra.

with the upper Pr_3O_{19} unit and three edges with the lower unit. The MoO_4 tetrahedra are bridging the upper and lower units, by sharing corners via the O1 oxygen. The MoO_4 tetrahedra are isolated from each other (they do not share common oxygen), forming discrete units.

It is simple to understand the relationship of this complex superstructure with the basic fluorite CaF₂ structure, containing regular CaF₈ units in a cubic coordination. The unit-cell parameters of the cubic structure of Pr₅Mo₃O₁₆ are related with the simple cubic a_f fluorite unit cell as $a \approx 2a_f$ ($a_f = 5.5 \text{ Å}$). $Pr_5Mo_3O_{16}$ can be rewritten as M₈O₁₆, containing 8 fluorite MO₂ units per formula and 32 MO₂ units per unit cell. The complex cubic superstructure thus results from the long-range ordering between PrO₈ and MoO₄ polyhedra across the crystal. In the fluorite structure every CaF₈ cubic polyhedron shares edges with 8 neighboring units. In Pr₅Mo₃O₁₆ this long-range arrangement is perturbed by the presence of MoO₄ tetrahedra, corner linked with 4 neighboring PrO₈ units. It is important to highlight that this structural type does not contain oxygen vacancies (as it happens in many fluorite-like oxygen-defective oxides, such as Pr₆O₁₁, deriving from PrO₂ by removal of 1/12 of the anions [20]). In the present case, the strong preference of Mo for the tetrahedral coordination gives rise to a deformation of the oxygen sublattice, inducing the presence of cavities adjacent to the MoO₄ tetrahedra, as it is highlighted in Fig. 6. These cavities could provide an easy diffusion path for oxygen ions, via interstitial positions, which is certainly worth exploring; the oxygen transport properties of this material have not been reported up to date.

It is interesting to get an insight into the valence states of the different cations present in the solids by means of the Brown's bond valence model [21,22]. It gives a phenomenological relationship between the formal valence of a bond and the corresponding bond length. Table 3 includes the valences calculated for Pr, Mo and O

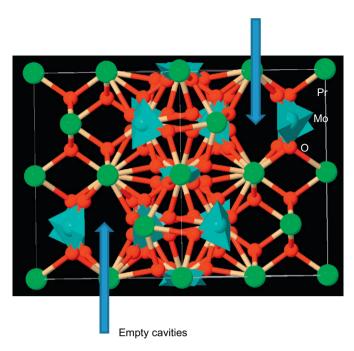


Fig. 6. [1 1 0] projection of the crystal structure, highlighting the presence of cavities adjacent to the MoO_4 tetrahedra.

Table 3 Valences^a determined from the individual Pr-O and Mo-O distances in Pr₅Mo₃O₁₆.

Pr1	3.26(1)
Pr2	2.887(9)
Mo	5.52(2)
01	1.947(9)
02	2.19(1)
GII	0.277
GII	U.Z//

^a The valence is the sum of the individual bond valences (s_i) for Pr–O and Mo–O bonds. Bond valences are calculated as $s_i = \exp[(r_0 - r_i)/B]$; B = 0.37, $r_0 = 1.743$ for the Mo⁶⁺–O²⁻ pair and $r_0 = 2.135$ for the Pr³⁺–O²⁻ pair, from Ref. [22]. Individual Pr–O and Mo–O distances (r_i) are taken from Table 2. The global instability index (GII) is calculated as the root mean of the valence deviations for the j = 1, ..., N atoms in the asymmetric unit, according to $GII = (\Sigma_j [\Sigma_i(s_{ij} - V_j)^2]/N)^{1/2}$.

from the individual Pr-O and Mo-O distances in Pr₅Mo₃O₁₆. The valence of Pr1 ions is significantly higher than the expected value of +3 whereas the valence of Pr2 atom is slightly lower than +3. This result suggests that Pr1 atoms are overbonded while Pr2 are slightly underbonded in this structure; in other words Pr1-O bonds are, in average, under compressive stress and Pr2-O bonds are under tensile stress, giving rise to a structure with a slight instable character. The variability of oxidation states observed for Pr, able to adopt trivalent and tetravalent states with easiness can account for the clear deviation of Pr2 to an overbonded state. On the other hand, the valence of Mo ions is 5.5, noticeably below the 6+ oxidation state commonly found in many molybdates (for instance, CaMoO₄ with scheelite structure). Probably, the size of the tetrahedral coordination environment for Mo, conformed by the surrounding PrO₈ polyhedra in the fluorite substructure, is too large to allow Mo to satisfy its bonding requirement and to reach the hexavalent state. The fact that MoO₄ tetrahedra are isolated in this structure, having no common oxygen, prevents the electronic delocalization across the structure, since otherwise the intermediate valence state of Mo would lead to a black-colored compound with electronic conductivity. Transport measurements in sintered pellets show that Pr₅Mo₃O₁₆ is insulating at room temperature, with resistivities higher than $10^8 \Omega$ cm. The variation of the electrical resistance with temperature was not measured.

The charge distribution observed in $Pr_5Mo_3O_{16}$ is different from that obtained in other members of this structural family, $CdTm_4Mo_3O_{16}$ [19] and $CdY_4Mo_3O_{16}$ [23]. In these Cd-containing compounds, Cd and R=Y, Tm are occupying randomly the 8c sites (average oxidation state of 2.5+), whereas the 12e positions are uniquely occupied by R^{3+} , and Mo is, nominally, hexavalent. In the present case, Mo clearly exhibits a reduced oxidation state close to $Mo^{5.5+}$, whereas the bond valence obtained for Pr1 indicates a mixed $Pr^{3+}-Pr^{4+}$ state, perhaps suggesting a partial charge disproportionation effect between Pr and Mo. An assumption of a purely trivalent Pr in $Pr_5Mo_3O_{16}$ would give a nominal valence of 5.67+ for molybdenum.

The presence of structural stresses in the crystal structure can be quantified by means of the "Global Instability Index" [24], GII in Table 3, which is calculated from the differences between observed and expected valences for all the atoms in the asymmetric unit. It is a measure of the extent to which the BVS rule is violated over the whole structure. As suggested by Brown [24] and Armbruster et al. [25], GII values higher than 0.2 v.u. indicate the presence of intrinsic strains large enough to cause instability at room temperature. In the present case GII is 0.28 indicating a noticeable structural instability. This fact perhaps accounts for the stabilization of different crystal structures for other rare earths such as the α - R_2 MoO₆ polytype, stable for R=Tb,..., Yb [14,16], or the γ polytype for La₂MoO₆.

Finally, it is worth extending the present results to the compound of nominal composition Ce₂MoO₆. As commented above, the similarity of the XRD diagrams of both oxides, including the superlattice reflections, suggests that both materials are isostructural, implying that the true composition of the Ce oxide may indeed be Ce₅Mo₃O₁₆. A study by X-ray spectroscopy of this material [4] already gave some insight on the coordination of the metal ions, in particular a distorted Ce-O₈ coordination environment and the tetrahedral location of the Mo ions. However, the description of Ce₂MoO₆ with trivalent cerium and hexavalent Mo was inconsistent with previously proposed charge transfer models [15,26,27]. Moreover, as recognized by the authors of Ref. [4], the X-ray spectroscopy results lead to a quandary about the structure of Ce₂MoO₆, difficult to rationalize with a Ce³⁺/Mo⁶⁺ cation distribution. The present structural model for Pr₅Mo₃O₁₆, extrapolated to the Ce isomorph, could justify a Ce mixed valence, the presence of Mo in a reduced oxidation state and, plausibly, the occurrence of an internal charge transfer implying the reduction of Mo⁶⁺ by Ce³⁺ accounting for the unusual electronic properties of this material.

4. Conclusions

The β - R_2 MoO $_6$ polymorph has been investigated for R=Pr. The crystal structure, refined from NPD data, indeed corresponds to a Pr_5 Mo $_3$ O $_{16}$ stoichiometry. It is a cubic superstructure of fluorite, formed by the long-range ordering of PrO_8 and MoO_4 coordination polyhedra. The two kinds of PrO_8 scalenohedra share common edges and are interconnected by MoO_4 tetrahedra by sharing corners with them. A bond-valence study indicates that the charge distribution observed in Pr_5 Mo $_3$ O $_{16}$ is different from that obtained in other members of this structural family, such as $CdTm_4$ Mo $_3$ O $_{16}$, containing hexavalent molybdenum. In the present case, Mo ions clearly exhibit a reduced oxidation state close to $Mo^{5.5+}$, whereas the bond valence obtained for Pr1 indicates a mixed $Pr^{3+}-Pr^{4+}$ state, perhaps suggesting a partial charge disproportionation effect between Pr and Pr0. Given the similarity of the XRD pattern of Pr_5 Mo $_3$ O $_{16}$ with that published for Pr_2 MoO $_6$, it can be assumed that this latter oxide also

exhibits an analogous crystal structure and charge distribution, which needs to be further proved experimentally.

Acknowledgments

We thank the financial support of the Spanish Ministry of science and Innovation to the project MAT2007-60536. This work was partially performed at the spallation source SINQ, Paul Scherrer Institute, Villigen, Switzerland.

References

- [1] C.N.R. Rao, B. Raveau, Transition metal oxides, VCH Publishers, New York, 1995.
- [2] C.N.R. Rao, B. Raveau (Eds.), World Scientific Publishing, Singapore, 1998.
- [3] J.M. Thomas, W.J. Thomas, Principles and practice of heterogeneous catalysis, VCH Publishers, Weinheim, 1997.
- [4] M.R. Antonio, U. Staub, J.S. Xue, L. Soderholm, Chem. Mater. 8 (1996) 2673.
- [5] F.P. Netzer, E. Bertel, in: K.A. Gschneidner, L. Eyring (Eds.), Handbook Physics and Chemistry of Rare Earths, Vol. 5, Amsterdam, North Holland1982, pp. 217–320.
- [6] J.F. Brazdil, in: I.E. Wachs, L.E. Fitzpatrick (Eds.), Characterization of Catalytic Materials, Butterworth-Heinemann, Boston1992, pp. 47–68.
- [7] J.M. Lopez Nieto, J.L.G. Fierro, L. Gonzalez Tejuca, G.J. Kremenic, Catalysis 107 (1987) 325.

- [8] G. Kremenic, J.M. Lopez Nieto, J.M.D. Tascon, L. Gonzalez Tejuca, S.W. Weller, Ind. Eng. Chem. Res. 26 (1987) 1419.
- [9] G. Kremenic, J.M. Lopez Nieto, J.M.D. Tascon, L. Gonzalez Tejuca, J. Less Comm. Met. 138 (1988) 47.
- [10] G. Kremenic, J.M. Lopez Nieto, J.M.D. Tascon, L. Gonzalez Tejuca, J. Less Comm. Met. 135 (1987) 95.
- [11] F. De Smet, P. Ruiz, B. Delmon, M. Devillers., J. Phys. Chem. B 105 (2001) 12355.
- [12] F. De Smet, P. Ruiz, B. Delmon, M. Devillers, Appl. Catal. A—General 172 (1998) 333.
- [13] F. De Smet, M. Devillers, C. Poleunis, P. Bertrand, J. Chem. Soc. Faraday Trans. 94 (1998) 941.
- [14] J.S. Xue, M.R. Antonio, L. Soderholm, Chem. Mater. 7 (1995) 333.
- [15] L.H. Brixner, Rev. Chim. Miner. 10 (1973) 47.
- [16] J.A. Alonso, F. Rivillas, M.J. Martínez-Lope, V. Pomjakushin, J. Solid State Chem. 177 (2004) 2470.
- [17] V. Favre-Nicolin, R. Černý, J. Appl. Crystallogr. 35 (2002) 734.
- [18] J. Rodríguez-Carvajal, Physica B 192 (1993) 55.
- [19] J.P. Faurie, R. Kohlmuller, Rev. Chim. Miner. 8 (1971) 241.
- [20] A.F. Wells, in: Structural Inorganic Chemistry, 5th edn., Clarendon Press, Oxford, 1984, pp. 543.
- [21] I.D. Brown, Structure and Bonding in Crystals, in: M. O'Keefe, A. Navrotsky (Eds.), Academic Press, New York1981, p. 1 vol.2.
- [22] N.E. Brese, M. O'Keefe Acta, Crystallogr. Sect. B 47 (1991) 192.
- [23] J.B. Bourdet, R. Chevalier, J.P. Fournier, R. Kohlmuller, J. Omaly, Acta Crystallogr. B 38 (1982) 2371.
- [24] I.D. Brown, Z. Kristallogr. 199 (1992) 255.
- [25] T. Armbuster, F. Röthlisberger, F. Seifer, Am. Mineral. 75 (1990) 847.
- [26] L.H. Brixner, A.W. Sleight, M.S. Licis, J. Solid State Chem. 5 (1972) 186.
- [27] A. Manthiram, J. Gopalakrishnan, J. Less-Common Met. 99 (1984) 107.